If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-10y=3
We move all terms to the left:
y^2-10y-(3)=0
a = 1; b = -10; c = -3;
Δ = b2-4ac
Δ = -102-4·1·(-3)
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-4\sqrt{7}}{2*1}=\frac{10-4\sqrt{7}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+4\sqrt{7}}{2*1}=\frac{10+4\sqrt{7}}{2} $
| -12.7w+12.3w-13.83=4.7w+19.83 | | 1=(x+6)+2=5x | | -8-10x=82 | | 3x-5=8+7x | | 8(x-3)=7x-29 | | 48,4+8x-12=56,4 | | 2x-3=(x-5) | | (5x-3)/4=x | | a*(9-2a)=4 | | 5x-9=-3x+19 | | 17.2k+2.56=18.3k+16.53 | | 5x-(2x-1)=-4 | | 17.2k=18.3k+16.53 | | 3w-10+5w=30 | | 12x6=24x() | | 4y-3=3y-5 | | 3(5k+2)=51 | | -21=-4a-1-6a | | 5t-20+8t=-2t+10 | | 3z+12=2z+14 | | 3x+21=2x+14 | | 3x+21=21+14 | | 3b-9=2b-6 | | 3x+1=-223 | | 2y-8=3y-12 | | 2z+12=3z-6 | | 3b-3=2b-14 | | 2a-12=3a-18 | | -f/8-5=-2 | | 3a+9=2a-12 | | 2b-4=3b-18 | | -5=-8+t/10 |